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Although detailed near field (0 to 3 cm) information 
regarding the exhaust plume of a two kilowatt arc jet is 
available (refs. 1 to 6), there is virtually little or no 
information (outside of theoretical extrapolations) 
available concerning the far field (2.6 to 6.1 m). 
Furthermore real information about the plasma at 
distances between (3 to 6 m) is of critical importance to 
high technology satellite companies in understanding 
the effect of arc jet plume exhausts on space based 
power systems. It is therefore of utmost importance 
that one understands the exact nature of the interaction 
between the arc jet plume, the spacecraft power system 
and the surrounding electrical plasma environment. A 
good first step in understanding the nature of the 
interactions lies in making the needed plume parameter 
measurements in the far field. All diagnostic 
measurements are performed inside a large vacuum 
system (12 m diameter by 18 m high) with a full scale 
arc jet and solar array panel in the required flight 
configuration geometry. Thus, necessary information 
regarding the plume plasma parameters in the far field 
is obtained. Measurements of the floating potential, the 
plasma potential, the electron temperature, number 
density, density distribution, debye length, and plasma 
frequency are obtained at various locations about the 
array (at vertical distances from the arc jet nozzle: 2.6, 
2.7, 2.8, 3.2, 3.6, 4.0, 4.9, 5.0, 5.4, 5.75, and 6.14 m). 
Plasma diagnostic parameters are measured for both 
the floating and grounded configurations of the arc jet 
anode and array. Spectroscopic optical measurements 
are then acquired in close proximity to the nozzle, and 

contamination measurements are made in the vicinity 
of the array utilizing a mass spectrometer and two 
Quartz Crystal Microbalances (QCM’s). 
 
 
Introduction 
 

The objective of the experiment is to obtain direct 
in-situ measurements of the arcjet exhaust plume 
characteristics by simulating the actual arcjet/solar 
array distance and geometry for satellites as they would 
be configured in orbit. Such plume characteristics are 
necessary to model the behavior of the solar panel 
immersed in the arcjet plume. Additionally, it was 
desired to determine whether tungsten ions from the 
arcjet cathode were present in any significant quantity 
in the arcjet plume. An attempt is made to detect the 
presence of tungsten ions using two QCM’s, a mass 
spectrometer and optical spectroscopy techniques. 
 
 
Experimental Setup 
 

The arcjet experiment was performed in the B2 
thermal chamber at the NASA Glenn Plum Brook 
Station located in Sandusky, Ohio. The B2 vacuum 
chamber is a world class facility (the largest facility of 
its kind in the world: 11.6 m diameter by 18.9 m high) 
capable of supporting full scale rocket engine thruster 
firings (sounding rockets, Delta III, and upper stage 
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rockets such as the Centaur booster) all in a safe 
vacuum environment. Additionally the B2 facility is 
designed to handle cryogenic and storable rocket 
propellants, rocket exhaust products, test article 
emissions, and pressurant venting. A multitude of 
existing engine and chamber support systems (low-
pressure vents, water cooled steam ejectors, etc.) can 
be employed to provide airflows, evacuate gases, and 
support a wide variety of test hardware. The B2 
chamber has a sustained pumping speed of 
330,000 liters per second (via ten large diffusion 
pumps) and is capable of extended testing for space 
simulation. 

A spectrometer and photodiode detector array is 
positioned behind the quartz window on the outside of 
the chamber. A matched set of 45° UV enhanced 
elliptical mirrors are used to direct light from the arcjet 
plume onto a 50 micron entrance slit thereby filling the 
spectrometer with light. The arcjet is positioned on the 
triangular test stand in the center of the bottom end of 
the chamber. The solar array height is raised between 
two interchangeable positions 2.1 m (near) and 4.3 m 
(far) using an electric motorized winch. The 3 m 
diagonal probe diagnostic rake is directly mounted to 
the array at a fixed distance 8 cm above the array 
surface. Diagnostics consist of five 11 mm diameter 
gold plated stainless steel spherical Langmuir probes, 
two cylindrical wire probes (0.003 mm diameter 
tungsten), two DC emissive probes for measuring 
plasma potential, a single Faraday cup for measuring 
ion temperature and ion distribution and an anodized 
aluminum plate. The probes are evenly spaced along 
the diagnostic rake with the Faraday cup located 
towards the lower right end of the diagnostic rack. A 
single 1.9 cm spherical Langmuir probe and a wire 
probe is located in close proximity to the chamber wall 
(50 cm height above the test stand) to check that the 
arcjet plume density is sufficiently low at the chamber 
wall. 

For the experiment a base pressure of 10–6 Torr was 
attained before allowing the simulated hydrazine gas 
mixture to flow. (Chamber pressure is monitored using 
gas manometers and ionization gauge.) The arcjet 
simulated gas mixture is made up of hydrogen, 
nitrogen and ammonia (in a 2:1:0.3 mole fraction), 
with flow rates of 2mg/s for H2 and 40mg/s or N2. A 
high impedance HV pulse is used to ignite the gas 

 
 
 

mixture flowing over the arcjet’s electrically heated 
tungsten cathode. 
 
 
Experimental Results 
 

Initial pumping of the B2 chamber commenced on 
August 31, 2004. Twenty four hours latter hard 
vacuum was achieved. Background pressure was 
reduced to 9 µTorr over a 72 hour period. On 
November 8th the first successfully firing of the arcjet 
occurred. The arcjet remained operational for about 
seven hours. In the early morning of November 10th the 
arcjet was operational once again. The arcjet remained 
operational through November 22, 2004. With the 
arcjet operating the arcjet gas mixture (hydrogen and 
nitrogen) remained stable in the (380 to 420 µTorr 
range) (see fig. 1 for details).  

 

 
Figure 1.—A snapshot showing typical levels of 

residual gas with the arcjet operating on 
November 10, 2004. 

 

The plasma parameters can be experimentally 
determined from the Langmuir probe volt/ampere 
characteristics or I-V curve. Typically the Langmuir 
probe is biased through a range of potentials (–30 to 
+30 V) and the current collected by the probe is 
measured with a very sensitive nano ammeter. 

However the most commonly used methods for 
deducing the plasma parameters is not strictly 
applicable for this experiment because of the low 
density of the hydrogen plasma. In order to overcome 
the low hydrogen density problem a fitting formula 
with four adjustable parameters floating potential, (Vf), 
plasma potential (Vp), electron (Te), and ion (Ti), 
temperatures) is used to circumnavigate the problem 
(fig. 2). 
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Figure 2.—Four adjustable parameters (Vf, 

Vp, Te, and Ni) are used to fit 
experimental points to theoretical 
calculations. 

 
Both the cylindrical wire probe and the spherical 

Langmuir probe I-V characteristics were used to 
determine the plasma parameters. Additionally 
emissive probes were used to experimentally measure 
plasma potential values. 

Attempts to measure electron number densities by 
exciting plasma waves (by arcing the anodized plate) 
and finding the peaks of the spectra resulted in the 
following data: Ne = (10.4+11)×106 cm–3 for wire probe 
number 1 and in Ne = (11.7+6.3)×106 cm–3 for 
Langmuir probe number 4, which despite the large 
error bars, are in general agreement with other 
measurements taken in the top position of the array. A 
simple plot of the density data is shown in figure 3. 
Because of changing experimental conditions 
(grounding and floating array, biasing individual 
strings, applying voltage between strings) and because 
of the natural errors in determination of the plasma 
number density much scatter is present in the density 
plots shown in figure 3. 

An attempt to improve on the density measurements 
was made on November 18 by sweeping all Langmuir 
probes with both the arcjet anode and array at the 
floating potential. Figure 4 shows a plot of the 
November 18th measurements. The best fit of electron 
number density data (using 5 spherical Langmuir 
probes) is also given in figure 4. A plot of the plasma 
potential, floating potential and electron number 
density in the chamber is plotted in figure 5. Note that 
the plasma and floating potentials appear to follow one 
another closely in figure 5. The electron temperatures 
(fig. 5) range between 0.09 and 0.15 eV. The attempt to 
determine electron temperature from the 
recombinational continuum results in the following 
number: Te = 0.28(+0.02) eV. Due to a bad connection 
in the Faraday cup wires no ion temperature and 
distribution data is available. 

 
Figure 3.—Plot of density distribution data 

gathered between November 8–12, 2004. 
 
 

 
Figure 4.—Best data fit of number density 

taken November 18, 2004. The standard 
deviation, σ = 0.364. 

 
 

 
Figure 5.—Plots of electron temperature, 

plasma and floating potentials obtained 
November 18, 2004. 

 
The QCM results showed little variation in either 

mass or frequency, all measurements lying well below 
the noise threshold of both detectors. As a result we 
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were unable to confirm the presence of tungsten ions, a 
fact that was also born out by the mass spectrometer 
results. A finial attempt was made to confirm the 
presence of tungsten ions using the optical 
spectrometer with similar results. The entire optical 
spectrum was sweep (250 to 850 nm) with the central 
wavelength settings set in 50 nm increments. The 
optical spectrometer results are shown in figure 6. 

 
 

Conclusions 
 
Much important and valuable information about the 

arcjet plume is reported here. The plasma plume is 
characterized by low electron  density (1.0×107 cm–3 to 
6.0×107 cm–3) cold plasma with electron temperatures 
ranging between 0.09 to 0.15 eV with mean value of 
0.128 eV and a standard deviation, σ = 0.026. The 
plasma potentials for the most part ranged between 3.0 
to 4.5 volts with floating potentials staying close 
(+0.5 V) to the plasma potential. The higher electron 
temperatures and number densities were found to be 
larger near the arcjet nozzle and smaller at the greater 
distances. 

We were unable to detect the presence of tungsten 
ions (by a multitude of either QCM, mass or optical 
spectrometer measurements) However, an attempt was 
made to set an upper limit on the density of atomic 
tungsten. The most intensive spectral line of tungsten 
(λ = 400.88 nm in maximum transmission efficiency 
region of the photocathode detector) has an excited 
(ionized) state, Te =3.4 eV, which corresponds to a 
transition probability equal to 1.63×10–7 s–1. 
Comparing the ratio (of the product of transmission 
probability and line intensity of tungsten with the 
measured spectral intensity results for hydrogen) an 
upper limit on the number density of atomic tungsten is 
estimated at NW

*<0.03.NH
* cm–3. Furthermore the 

distance an excited tungsten atom can travel is about 
three times shorter than for hydrogen. As a result if 
tungsten is ionized by thermionic electrons near the 
arcjet cathode the number of atoms of tungsten 
reaching a region where the spectrum is observable 
must be negligible. 

 
 
 

 
Figure 6.—The combined optical spectrum 

results in the range (250 to 800 nm). 
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